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INTRODUCTION 

The minimum variance or  Kalman formulation for estimating a state 

vector from observations has been used by numerous investigators. Numerical 

problems with this technique have appeared in some applications. Those ap- 

plications which tend to give difficulty are characterized by a sequence of obser- 

vations which are very sensitive to  some elements of the state vector but have 

little sensitivity to the remaining elements. Another way of stating the condition 

is that numerically, the measurements do not span the state space. 

A typical example of where problems might exist is in the determination 

of the orbit of a lunar orbiter from Earth-based range and,/or range rate tracking 

data. The numerical problems do not necessarily always occur, but they are  

likely to occur if tracking data proceeds indefinitely. Numerical difficulty in 

an orbit determination program is characterized by a gradual increase in the 

residual magnitudes followed eventually by total loss of the state estimate. Error 

analysis programs show signs of difficulty by calculating negative variances, 

that is, the covariance matrix gradually becomes singular. In addition, critics 

of the method have s'tated that, beease mazy obser&ions 8re included, the 

covariance matrix becomes too small and the latest observations are  not suf- 

ficiently weighted. Since all error sources are not accounted for, the result 

is that the estimate of state will  not follow the observations as well as one would 

like. 

This report discusses a new technique which should eliminate these 

problems with the minimum variance estimator. The method to be discussed 

is based on the philosophy that it is impossible to obtain a perfect estimate 

of the state vector, regardless of the number and quality of the observations. 

Instead, the observations are  used in a near-optimal manner until the e r ror  

in the estimate of the state is equal to some acceptable accuracy bound. 
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Thereafter the observations are continually processed to keep the estimate within 

this acceptable accuracy bound. 

REVIEW OF THE MINIMUM VARIANCE SOLUTION 

The minimum variance solution is generally given in the form of a set of 

recursive equations (for example see Ref. 1). 

Time Updating 

t ?  

to 
2 (t) = 1 X (t) dt 

Measurement Updating 

T T -1 
Pn = P  - P H  (HPH +&) HP 

Y (t) =G(X, t) + q 

? (t) = G (2, t) 

(3: 

(4) 
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I -  Equation (1) simply says that the estimate of the state, % , at any time, t , 
is found by integrating the equations of motion from time, t , to time, t . 
The equations of motion are of the general form 

0 

X = F(X, t) 

So if we let 

A (t) = VxF 

then for small deviations from 2 , given by we have 

where 

n T  
Hence, the covariance matrix of errors in the estimate E [: (X-2) (X-X) 1 =P (t) 
is given by eq. (2). 

Equation (2) implies perfect modeling of the dynamical system and that all 

e r ro r  sources, random as  well as deterministic, are modeled. More will be said 

about this later. 
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In eq. (31, Y (t) is the observation which is assumed to be a function 

of the state, given by eq. (5). The computed observation, Y , is determined 

from the estimated state, 2 , as shown in eq. (6) .  The other quantities given 

in eqs. (3)-(5) are 

q = random er ror  in measurement 

where 

The use of eq. (3) implies a perfect model for the observation function 

and all e r ro r  sources must be modeled. 

Discussion of the Minimum Variance Solution 

The solution given by eqs. (1)-(6) can be proved to be optimal in the 

least-squares sense for the case of linear equations. For nonlinear problems 

no solution is known. However, experience has shown that the above equations 

work quite adequately for reasonable starting estimates of X . The problems 

discussed here arise after calculation of orbits using a large number of obser- 

vations, wherein the estimate of the state has been good and then drifts away. 
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Hence, these problems are not linearity difficulties where convergence failure 

is a characteristic trait. The problems consist of numerical and modeling e r rors  

which prevent the filter from maintaining good estimates. Improper modeling of 

the dynamic and measurement equations, as well as neglecting the effects of 

numerical computation error ,  are the fundamental causes. 

One obvious cure would be to correct the mathematical models, including 

the modeling for numerical truncation e r ror  effects. Such a cure is not practical 

for a number of reasons, such as inadequate knowledge, computer size, calcula- 

tion times, etc. Hence, we need search for a simpler treatment which will give 

satisfactory results that are  less dependent on the completeness of mathematical 

model and numerical accuracy of the calculations. 

Inherent Numerical Difficulties with the Minimum Variance Solution 

Before discussing the proposed solution, it is relevant to discuss the 

fundamental sources of difficulty. The problem will arise in eq. (3) where 

the measurement, Y , changes the state estimate. Ut us examifie this equatim. 

Let 

T 
If we let Y be a scalar, then the quantity HPH 

inverse is not a problem. Suppose we let 

+ Q is a scalar. Hence, the 
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The vector quantity C , when multiplied by the residual Y-? and divided by 

the scalar HPH +Q , is the quantity AX . The elements of AX must retain 

numerical significance if the observations are to improve the estimate of the state. 

T 

The vector B contains the sum of the absolute values of the elements of 
T the product P H  which have been added to find the resultant vector C . It 

should be reasonably obvious that if we choose a sufficiently small positive number 

c and find that 

then C (K) has no significance. For the IBM 7094 with single precision c M 

If one lets 

then the exponent of p (K) is an indication of its numerical significance in'the 

calculation of A x  (K) . Certainly if A X (K) has no numerical significance, 
T 

the Kth state estimate based on the P H  calculation should not be changed. 

Most all the numerical difficulties encountered might be attributed to the 

loss of significance in the covariance matrix P . This is true to some extent 

so we should examine the operation indicated by eqs. (2) and (4). Consider 

first eq. (2). 
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The IBM 7094 truncates rather than rounds off when performing the calcula- 

tions. Let us assume for simplicity that cp and P are in single precision 

and that P (t) is computed in double precision and then stored (truncated) in 

single precision, Then for eq. (2) 

n 

The quantities ci and c.. are truncation errors .  Hence following the operation, 

the computed correlation coefficient p.. will be in e r ror  by C 9 

9 

1 - €.. c - t  11 
Pij  - Pij J ( 1 - E . )  1 ( M j )  (15) 

t 
9 

The quantity p.. means the true value to the significance of the original p and 

P .  

Equation (15) does not imply any significant change in the correlation coef- 

ficients due to numerical difficulties. Hence, it is not believed that the numerical 

calculation implied by eq. (2) is fundamental to the source of the problem. A means 

of insurance which has worked favorably in two er ror  analysis programs (Refs. 2 

and 3) is to follow the numerical calculation by a multiplication of the diagonal 

terms of P (t) by the factor 1 + 6 . For the 7094, a value of E of about 10 

has been reasonably adequate. * The MINVAR orbit determination program 

(Ref. 4) also uses a modified version of this correction technique. 

-8 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - - - - - - - - - - - - - - - - - - - - - - - - -  
* Prior  to the technique discussed in this report, this was the method used for 

eliminating covariance matrix difficulties in the e r ror  analysis programs de- 
scribed in the references. 
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Consider eq. (4), repeated here for convenience 

T T P = P - PH (HPH +Q)- 'HP n 

T It has already been shown that some elements of the quantity P H  may have 

no numerical significance. If the numerical computations indicated by eq. (4) 

are carried out, the problem is further aggravated by subtracting a scaled outer 

product which can lose significance. Note that P H  is a vector for a single 

observation, hence, the operation of eq. (4) must cause the eigenvalues of P 

to be smaller than those of P . Without some precautionary procedure for 

'n 9 
forcing the covariance matrix, 

the application of eq. (4), numerical difficulties are to be expected. The problem 

would exist whether single o r  double precision arithmetic were used in the cal- 

culations, although it should present less of a problem with double precision 

calculations and storage. 

T 

n 

to remain positive semi-definite following the 

The logic for the calculations required by eq. (13) is considered next. 

Failure to pass the indicated test would result in C (K) being set to zero. This 

procedure should help to prevent numerical difficulties with the P (tj matrix 

and also prevent calculation of fictitious AX 0 ' s  . It cannot, however, restore 

some overall numerical significance to the P (t) matrix; that is, force it to 

retain a value commensurate with the actual covariance matrix of e r ror  in the 

estimate of the state. 
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ESTIMATION OF STATE WITH ACCEPTABLE ACCURACY CONSTRAINTS 

The problems previously discussed resulted from 1) numerical e r rors  

and 2) er rors  due to improper mathematical models. The basic theory was 

derived without either of these problems being considered. Hence, it may be 

fruitful to reconsider the theoretical assumptions in the light of these problems. 

Suppose we define a problem as follows: 

A T  
Given: fi (to) and E (x-2) (x-x) = P (t 0 ) 

A sequence of observations 

where q is a random variable with zero mean and variance Q . 

Find: An estimate of the state sni (t3 

T 
E (x-; .) (x-2 .) is a minimum if ni ni 

E (y-? J2 > ni 

t h  
The symbol fi means the estimate of the state including the i observa- 

n i  
tion. 
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The conditions imposed by eq. (16) lead to the normal formulation given 

by eq. (3). Suppose that the indicated value of 

T by use of the optimal filter, then the minimization constraint on E (x-fi ) 

is removed. A new weighting matrix for including the measurements is then 

computed such that following the observation 

(x-fi ) n n 

Before going further, one solution of the problem using this additional 

freedom will be shown. This solution will not have as  many numerical problems 

as the normal minimum variance estimator. 

Let 

The quantity, b , of eq. (19) is a scalar whose value is unity for the optimum 

filter. The covariance matrix Pn is then given by 

2 T  T -1 
P = P-(2b-b ) P H  (HPH +&) HP n 

The variance between a perfect measurement and the computed measurement 

is, for a single observation 

T 2 T 2  T -1 
H P  HT = (HPH ) - (2b-b ) (HPH ) (HPH +&) n 
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To find the scalar gain, b , set HP HT = € in eq. (21) and solve the quadratic 

equation, hence 
n 

Real solutions exist when 
r 1 

If = KQ , then b of eq. (22) is real when 

ariance of residual for a perfect measurement) 
(Variance of residual for the real measurement) K r m  

It is readily shown that real solutions exist only if H P  HT < c . Hence, we 

use b =1 for the imaginary solution and b 

solution. The positive sign for the radical of eq. (22) is taken so that b remains 

positive. 

n 
given by eq. (22) for the real 

The fact that such a philosophy reduces the number of numerical problems 

is evidenced by examining eq. (20). 

f o r l < b < 2  a smaller than optimum outer product is subtracted 

from P . Hence, P will have larger eigenvalues 

than the optimum (b =1). 
n 

for b = 2 

for b > 2 

P = P  n 

A positive outer product 

make the eigenvalues of 

vector is added. This will 

P greater than those of P . 
n 
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The first solution has the desired character of reducing the numerical 

difficulties encountered in covariance matrix computations. This indicates 

that, by redefining the problem in the manner shown in eq. (16)-(18), that is, 

by introducing acceptable accuracy tolerance constraints, the estimate of the 

state is improved. All the properties desired are not contained in this first 

example solution. For instance, if P is set to zero, nothing can ever cause 

the measurement residuals to affect the estimate of the state X 

more, there is nothing to combat the fact that P H  

cance. 

A 

and further- n T may lose numerical signifi- 

An Alternate Solution 

Previous information whose weight is stored in P (t) , is not entirely 

reliable due to modeling and numerical errors .  It is proposed that the desired 

solution should contain the following properties: 

1. Weights for current observations should be chosen so that the 

corresponding changes in the estimate of the state will reflect 

the quality of the current observations. 

2. The upper bound on acceptable accuracies should be approached 

from either direction in an asymptotic fashion. For example, if 

P = 0, P (t) should grow until HP H = e .  Similarly, if H P  H > c ,  

the filter should give H P  HT = E only in the limit of an infinite 

number of observations. 

T T 
n n 

n 

These two properties govern the solution so that it is never optimal in the 

normal sense. 
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In accordance with property No.  1, the direction of the change in the 

state vector AX will be chosen as the sum of the following two components 

AX, and A X 2 :  

1 .  I€ the past information can be completely relied upon 

T T -1 
AX = AX, = P H  (HPH +Q) 

2.  If there were no a priori information ( P  = a) 

T T 
AX = AX2 = c H (HPH + Q)-' 

The proof that eq. (24) is an optimal estimate can be found by considering 

a single observation. Let 

y = H x + q  

Assuming a maximum likelihood formulation with no a priori information, then 

(the symbol # denotes 

T -1 # T -1 
x = @ Q  H ) H Q  Y 

the pseudo inverse). 

T -1 # H I  QH 

(H H ~ ) ~  
(H Q H) = 

(23) 

Hence 

H I  
x =  'F Y 

HH 
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T -1 Introduction of the scale factor, F (HPH + Q) in eq. (24) allows AX2 to 

be proportional to the optimal value [eq. (26)l for the condition where no a priori 

lmowledge is available. 

The new estimate of the state following an observation is 

2 = + (PH T + C H  T ) (HPH T + Q ) - l  Cy-?) n 

and 

n E (X-Xn) (X-Xn) = P 

T P = P-PH ( H P H ~ +  Q)-' HP + c 2  ( H ~ H ~ + Q ) - ~  H ~ H  n 

The addition of an outer product vector which causes the eigenvalues of P 

be larger than the values given by the optimum estimator ( c  = 0 )  is noted in 

eq. (28). Updating of J? (t) and P (t) with respect to time utilizes eqs. (1) and 

(2). Using eq. (28), the boundary value on HP HT for an infinite number of 

observations (at the same time point) is found 

to n 

n 

T H P H T  = c H H  n 

T 
For various types of measurements, HP H has the dimensions of the measure- n 
ment squared. If Y is a range measurement, then HH = 1 . If c were chosen 

as KQ , then K will represent that fraction of the variance of an individual 

T 

measurement which one can expect to determine range, after an infinite number 

of observations. The value of K to be used is subject to the specific problem 

where the filtering is applied. 
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A Simple Example 

A s  previously mentioned, perfect modeling of a dynamical problem is 

never possible. The filtering equation shown (27) should have merit in problems 

where e r rors  due to the equations of motion are neglected. A very simple 

problem has been chosen to illustrate this point. 
[ 

Actual Model 

X = O . X + e  

Y = x + q  

Simulated Model 

The actual model has the solution 

X (t) = X (0) + e t 

The simulated model has the solution 

ii (t) = 2 (0) 
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A problem as simple as this, in any real situation, could only have 

been formulated by a person with too much education and too little common 

sense. If a measuring device is available, the instrument readings would be 

believed rather than trusting estimates from a theoretical model. This theory, 

using accuracy tolerances, forces the observations to be considered in the 

problem solution. 

I 
OBSERVATION I RESIDUAL P + . 5  

TIME I P + l  

2 .75 
2.5 .693 
2.77 .67 
2.91 .67 

I 
I 

4 I 
I 

8 I 
10 I 

2 

6 

I 2.95 .67 

Figure (1) shows the estimated results for c - 1 and X(0) = 10 for 

the Kalman, maximum likelihood (or least squares), and the new estimator. For 

the Kalman and the - new estimator, X (0) = 10 and P (O+) = Q . Also for the 

new estimator, E of eq. (27) is chosen as 

h 

x (t) 

1 1 . 5  
13.23 
15.09 
17.05 
18.97 

K = 1. , .5 ,  . 0 are illustrated for  the example where Q = 1 . 

Following the observation measurement and using two values of K for 

the new estimator, the values of the Pnts are computed 

n 

P +1 
P + l  P + l  P + l  

1 --- + - -1 PL 
for K = l . O  P = P  - n 

.25 - P + .25 P2 + - 
P + l  P + l  P + l  for K = . 5  P = P  - n 

P n 

.625 
,538 
.512 
.504 
.500 

(34) 

(3 5) 
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Figure 1 illustrates the advantage of retaining trust in current observa- 

tions for a simple case of improper modeling. The Kalman and maximum likeli- 

hood estimates are equal and very poor for this example. They also have the 

characteristic of worsening with time (number of measurements). For K = 1, 

the new estimator simply tracks the measurements. Hence, the error  in the 

estimate of the observation is the error  in the observation. For K = . 5 ,  the 

estimated state lags the measurement. Examining Table 1 shows, however, that 

the residuals have very nearly reached a constant value and that P and the 

gain pH + c H  have reached a constant value. Therefore, although the 

e r ro r  in the estimate has grown to  a value biased from the observation, it will 

never get worse than this value so  long as observations are included in the 

estimate. For any 0 < K < 1, the solution will behave similarly. That is, 

the e r r o r  will reach a steady-state value rather than an ever-increasing value 

as is true for the Kalman or maximum likelihood estimators. 

n T T 

(HpHT + Q) 

A More Realistic Example 

Suppose down-range tracking of a launch vehicle whose launch guidance 

system includes an inertial platform is the problem. Telemetry data from the 

inertial system is assumed available so that measurements of vehicle attitude 

and acceleration are given. 

i The equations of motion for  such a system are of the form 

X = G(X,t) + Am 

A = the measured acceleration (due to thrust, drag, etc.) . 
m 

G (X, t) = the gravitational acceleration. 
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A 

in the accelerometers, gyro-drifts, etc. 

may be considered as being the true acceleration + errors caused by biases m 

Suppose the state, X , is to be estimated including down-range tracking 

data starting from lift off. At lift off the uncertainty in the state is assumed zero. 

Direct integration of eq. (36) results in e r rors  in the estimate which are  caused by 

the onboard platform measurement e r ro r  sources. Suppose the down-range track- 

ing data is to be utilized in estimating the state but the complexity of modeling the 

onboard measurement sources is a deterring factor. 

For the Kalman estimator 

Therefore, if P (t ) = 0 and the onboard measurement error  sources are not 

modeled, then P (t) = 0 . Hence, tracking data is not included in the estimate. 
0 

The new estimator does not, however, require this modeling (except 

for e r ro r  analysis procedures). That is, the state estimate will change with 

successive observatioiia since the v;eightb.g matrix P 

vation. 

grows after each obser- n 

An er ror  analysis of the inertial system only and of the inertial system 

augmented by tracking for a sample case where c = KQ was carried out. The 

results a re  shown in Figure 2 .  The e r ro r  analysis program used for this purpose 

is a modified version of the program in Ref. 5 .  As can be seen from the results, 

the new estimator does allow an improvement in the state estimate. This occurs 

even though the system is not properly modeled. Twelve tracking stations were 

involved in the e r ror  analysis of the simulated example. The complete descrip- 

tion of all constants is not included here for simplicity and brevity. 
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The results shown are not at  all surprising. Tracking data should be 

able to update an inertial system without the necessity of modeling all the 

inertial e r ro r  sources. The new estimator is simply one means of doing 

just this. 

CONCLUDING REMARKS 

A new method for estimating the state of a system from observation 

data has been described. This method is based upon setting acceptable accuracy 

constraints on the e r ro r  in the estimate, thus allowing the derivation of non- 

optimal filters which have much better numerical implementation characteristics 

than the Kalman (optimal) formulation. The new filter also has the desired 

property of keeping the estimate close to the values implied by current observa- 

tions. It has been shown that this characteristic is very valuable for e r ror  

reduction in situations where the equations of motion of the state are not 

properly modeled, In addition, a philosophy such as  this permits the use of 

a simpler filter than what normally may be required in complex situations. 

It is difficult to predict what effect the impact of the above described 

procedure for estimating the state of a system from observations will have on 

data reduction programs. The method proposed would seem to be most use- 

ful for onboard calculation procedures where simplicity, computer size, and 

speed have a much more significant importance than for programs designed 

for large, general-purpose Earth-based computers. The new method could, 

however, remove the numerical difficulties experienced by large, general- 

purpose computer programs designed in accordance with the minimum variance 

solution. 
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0 = Observations 
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x 

0 = New estimator for K = 1 

0 = New estimator for K = .5 

X = Either 2) Maximum likelihood estimator 
b) Kalman estimator 
c)  New estimator for K = 0 

I I I I 1 

0 2 4 6 a 10 

Figure 1 
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Figure 2A 

RMSP = Root Mean Square Position Error 

22 


